Yes, Good cloud infrastructure Do Exist

Wiki Article

AI Roadmap Workbook for Non-Technical Business Leaders


Image

A clear, hype-free workbook showing how AI can truly benefit your business — and where it may not be useful.
The Dev Guys – Mumbai — Smart thinking. Simple execution. Fast delivery.

Why This Workbook Exists


In today’s business world, leaders are often told they must have an AI strategy. AI discussions are happening everywhere—from vendors to competitors. But business heads often struggle between two bad decisions:
• Accepting every proposal and hoping it works out.
• Declining AI entirely because of confusion or doubt.

This workbook offers a balanced third option: a calm, realistic way to identify where AI truly fits in your business — and where it doesn’t.

You don’t have to be technical; you just need to know your operations well. AI is only effective when built on your existing processes.

How to Use This Workbook


Either fill it solo or discuss it collaboratively. It’s not about completion — it’s about clarity. By the end, you’ll have:
• A short list of meaningful AI opportunities tied to profit or efficiency.
• Understanding of where AI should not be used.
• A clear order of initiatives instead of scattered trials.

Treat it as a lens, not a checklist. Your AI plan should be simple enough to explain in one meeting.

AI strategy is just business strategy — minus the buzzwords.

Step One — Focus on Business Goals


Focus on Goals Before Tools


Too often, leaders ask about tools instead of outcomes — that’s the wrong start. Start with measurable goals that truly impact your business.

Ask:
• Which few outcomes will define success this year?
• Where are mistakes common or workloads heavy?
• Which decisions are delayed because information is hard to find?

AI matters when it affects measurable outcomes like profit or efficiency. Only link AI to real, trackable business metrics.

Start here, and you’ll invest in leverage — not novelty.

Step 2 — See the Work


Map Workflows, Not Tools


Before deciding where AI fits, observe how work really flows — not how it’s described in meetings. Ask: “What happens from start to finish in this process?”.

Examples include:
• Lead comes in ? assigned ? follow-up ? quote ? revision ? close/lost.
• Support ticket ? triaged ? answered ? escalated ? resolved.
• Invoice generated ? sent ? reminded ? paid.

Inputs, actions, outputs — that’s the simple structure. AI adds value where inputs are messy, actions are repetitive, and outputs are predictable.

Rank and Select AI Use Cases


Evaluate Each Use Case for Business Value


Evaluate AI ideas using a simple impact vs effort grid.

Use a mental 2x2 chart — impact vs effort.
• Focus first on small, high-impact changes.
• Big strategic initiatives take time but deliver scale.
• Nice-to-Haves — low impact, low effort.
• Delay ideas that drain resources without impact.

Consider risk: some actions are reversible, others are not.

Begin with low-risk, high-impact projects that build confidence.

Laying Strong Foundations


Data Quality Before AI Quality


Messy data ruins good AI; fix the base first. Clarity first, automation later.

Keep Humans in Control


Keep people in the decision loop. As trust grows, expand autonomy gradually.

Avoid Common AI Pitfalls


Learn from Others’ Missteps


01. The Shiny Demo Trap — getting impressed by flashy demos with no purpose.
02. The Pilot Graveyard — endless MVP Building pilots that never scale.
03. The Automation Mirage — expecting overnight change.

Define ownership, success, and rollout paths early.

Working with Experts


Non-tech leaders guide direction, not coding. Focus on measurable results, not buzzwords. Expose real examples, not just ideal scenarios. Clarify success early and plan stepwise rollouts.

Transparency about failures reveals true expertise.

Signs of a Strong AI Roadmap


How to Know Your AI Strategy Works


It’s simple, measurable, and owned.
Buzzword-free alignment is visible.
Ownership and clarity drive results.

Essential Pre-Launch AI Questions


Before any project, confirm:
• What measurable result does it support?
• Is the process clearly documented in steps?
• Do we have data and process clarity?
• Where will humans remain in control?
• How will success be measured in 90 days?
• What’s the fallback insight?

Conclusion


Good AI brings order, not confusion. It’s not a list of tools — it’s an execution strategy. True AI integration supports your business invisibly.

Report this wiki page